Expected operational solar wind forecast gains from assimilation of in situ L5 observations

Harriet Turner, Mathew Owens, Matthew Lang, Andy Smith, Pete Riley and Siegfried Gonzi

Solar wind forecasting – why

- Stream interaction regions (SIRs) are a recurrent source of space weather
- Coronal mass ejections (CMEs) drive the most severe space weather
 - Propagate through the solar wind
- Upstream monitors only give 40 minutes of warning

Data assimilation (DA)

Use of DA in space weather

Solar wind

Photosphere – lowest layer of the Sun's atmosphere that is observable Ionosphere – where Earth's atmosphere reaches space

BRaVDA scheme

Burger Radius Variational Data Assimilation

CR2096

Harriet Turner

Time series

h.turner3@pgr.reading.ac.uk

Observations

- Solar Terrestrial Relations Observatory (STEREO)
- Advanced Composition Explorer (ACE)
- Deep Space Climate Observatory (DSCOVR)
- For DA to be operational, it needs to work with real time observations

Real time data issues

Real time data issues

Assimilating multiple observations

h.turner3@pgr.reading.ac.uk

L5 experiments

Harriet Turner

Does it work?

h.turner3@pgr.reading.ac.uk

Conclusions

- Data assimilation is underused in solar wind forecasting
- An operational DA scheme would need to use real time data
- We have verified the BRaVDA scheme with both real time and science level observations
- Using real time data does not significantly worsen the forecasts
- A future pairing of an L5 and L1 monitor could provide forecast gains for solar wind speed
- Future work investigate the impact of using DA on CME speed and arrival times

Thank you!

