

The influence of spacecraft latitudinal offset on the accuracy of corotation forecasts

Harriet Turner, Mathew Owens, Matthew Lang and Siegfried Gonzi

Corotation forecasts

- Assumes steady-state solar wind in the reference frame rotating with the Sun
- Uses observations on the ecliptic plane
- Corotation time determined by longitudinal and radial separation

Connected variables

- Corotation time longer corotation times makes the steady-state assumption less valid
- Solar activity affects time evolution of the solar wind
- Latitudinal offset two spacecraft observing different solar wind structures

- Data assimilation (DA) combines observations and model output to find an optimum estimation of reality
- Investigate uncertainties through analysis of corotation forecasts

• Mission due for launch in 2027 to provide a side-on view of Earth-directed CMEs

- Using STEREO mission and OMNI data set
- 6 possible corotation combinations
- Majority of analysis for 2007 2014

• Previous methods used only longitudinal and radial separation

Methodology

• Included variation in spacecraft orbital angular speed in the inertial reference frame

Results

- Complications due to variable aliasing (misidentification of a signal)
- Low latitudinal offset at times of low corotation time and sunspot number
- Difficult to ascribe changes in mean absolute error (MAE) to one variable

STEREO-B to STEREO-A corotation $|\Delta\theta| =$ latitudinal offset, $\Delta t =$ corotation time

Variable aliasing

- To limit aliasing, a period of approximately constant sunspot number and even sampling of latitudinal offset at all corotation times was required
- Used period from 08/2009 to 02/2011 time up to the transition from solar minimum to maximum
- Isolate latitudinal effect

Restricted period

- MAE:
 - High $|\Delta \theta| = 77.7 \pm 2.4 \text{ km s}^{-1}$
 - Low $|\Delta \theta| = 53.3 \pm 2.4 \text{ km s}^{-1}$
- Sunspot number:
 - High $|\Delta \theta| = 20.2 \pm 0.6$
 - Low $|\Delta \theta| = 19.9 \pm 0.9$
- Corotation time:
 - High $|\Delta \theta| = 327.8 \pm 2.8$ hrs
 - Low $|\Delta \theta| = 327.1 \pm 5.0$ hrs

Latitudinal offset with MAE

- Approximately constant error up to 6° separation
- Increasing dependence for $> 6^{\circ}$

	Correlation coefficient	p-value
$ \Delta \theta < 6$	0.40	0.44
$ \Delta \theta \ge 6$	0.75	0.02

- Implement results into the DA scheme
- Validate the changes
- Look at CME propagation through the improved ambient solar wind

- Used STEREO spacecraft and OMNI data set for corotation forecasts
- Approximately constant error contribution from latitudinal offset up to 6 degrees, increasing dependency above this
- Latitudinal offset should have little effect on L5 corotation
- Will be used to improve data assimilation

Work is available pre-print at <u>https://www.essoar.org/doi/abs/10.1002/essoar.10507131.1</u>

Thank you!

I am happy to answer any questions h.turner3@pgr.reading.ac.uk

