

Environment **Research Council**

The need for heliospheric data assimilation Harriet Turner, Mathew Owens, Luke Barnard, Matthew Lang

Sandy Park, 11th September 2024

Solar wind model inputs A veritable smorgasbord

- wind models
- They are all valid, but are often very different

MAS

v, at r = 30.00Rs

• There are numerous different coronal models producing output for use in solar

WSA Solar Wind Velocity at 5 R_e 90 700 Heliographic Latitude 600 · 500 /w 400 -45 - 300 -90 254 344 194 224 284 314 104 74 134 164 344 44 Carrington Longitude

Heliosphere **Ambient solar wind in HUXt**

WSA

Time: 0.00 days HUXt2D Time: 0.00 days 2012-10-05 05:54 2012-10-05 08:47 Lat: 0 deg 500 600 700 800 Solar Wind Speed (km/s)

CME event October 2012

Time at 21.5 rS	Time at 21.5 rS 2012-10-05 084 ⁻	
Longitude	9	
Latitude	-24	
Width	84	
Speed	698	
SWPC arrival	2012-10-08 1500	
Observed arrival	2012-10-08 0431	

Cone parameter from events studied in Barnard, 2017. DOI: 10.1002/2017SW001609

Heliosphere Modelling the CME in HUXt

WSA

CME arrival times Comparison of input

	Arrival time	Difference
Observed	2012-10-08 0431	
SWPC	2012-10-08 1500	+10h 29
MAS	2012-10-08 1239	+8h 08
WSA	2012-10-07 2258	-5h 33
altWSA	2012-10-07 2343	-4h 58

Data assimilation **Application to the solar wind**

- reality
- Extensively used in NWP, leading to large forecast improvements
- Applied to the solar wind, forecasts improved (my PhD)

• DA combines model output and observations to form an improved estimation of

Prior = before DA, posterior = after DA

Heliosphere Ambient solar wind in HUXt with DA

MAS

WSA

Heliosphere Modelling the CME in HUXt with DA

MAS

WSA

CME arrival times Comparison of input

	Prior arrival time	Difference	Posterior arrival time	Difference
Observed	2012-10-08 0431			
SWPC	2012-10-08 1500	+10h 29		
MAS	2012-10-08 1239	+8h 08	2012-10-08 0250	-1h 41
WSA	2012-10-07 2258	-5h 33	2012-10-08 0224	-2h 07
altWSA	2012-10-07 2343	-4h 58	2012-10-08 0440	+0h 09

Could DA be the pathway to making the models agree?

Maybe Not quite as clear cut

- Other case studies show mixed results
- DA doesn't improve CME arrival time f all the case studies
- Overall reduction in RMSE for forecast but this could be solar cycle dependen
- Unsure on what conditions are favourable for DA, and why it performs worse in some areas

for		Ambient solar wind [km/s]	Ambient sola wind + CMEs [km/s]
ts, It	Prior RMSE	89.3	152.9
S	Posterior RMSE	79.4	137.6

For all 4 Barnard, 2017 CMEs plus one extra from a similar time

Other problems CME parameters

- Large uncertainties on CME cone parameters
- One case study does not give an arrival time at Earth, yet SWPC gets an arrival time with the same parameters
- The CME is observed at Earth
- Difficult to quantify improvement from solar wind if CME parameters are wrong

- Investigate the impact of the different coronal model inputs - multi-model study
 - Use Gong and HMI magnetograms as input for WSA (alt) and MAS
 - Potentially use other coronal models such as CorTom
- Try to untangle the conditions that DA works best in and why it seems to perform worse elsewhere

Barnard & Owens, 2022. DOI: 10.3389/fphy.2022.1005621

Conclusions **Nearly finished**

- leading to different solar wind states
- DA brings these closer in agreement
- arrival times
- Lacking confidence in CME parameters makes a large-scale statistical study difficult without a reliable verification data set

• Large disagreement between photospheric observatories and coronal models,

• The ambient solar wind is improved, which should lead to an improvement in CME

"All models are wrong, DA should be less wrong"

A wise jaded supervisor, 2024

